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Abstract 

 
 
 

  
 In the U.S., the average 40 year old plant employs almost eight times as many workers as 
the typical plant five years or younger. In contrast, surviving Indian plants exhibit little growth in 
terms of either employment or output. Mexico is intermediate to India and the U.S. in these 
respects: the average 40 year old Mexican plant employs twice as many workers as an average 
new plant. This pattern holds across many industries and for formal and informal establishments 
alike. The divergence in plant dynamics suggests lower investments by Indian and Mexican 
plants in process efficiency, quality, and in accessing markets at home and abroad. In simple GE 
models, we find that the difference in life cycle dynamics could lower aggregate manufacturing 
productivity on the order of 25% in India and Mexico relative to the U.S. . 
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I. Introduction 
  
 A well-established fact in the U.S. is that new businesses tend to start small and grow 

substantially as they age.1  Atkeson and Kehoe (2005) suggest that this life cycle is driven by the 

accumulation of plant-specific organization capital.  According to this interpretation, 

establishments grow with age as they invest in new technologies, develop new markets, and 

produce a wider array of higher quality products.  Foster, Haltiwanger, and Syverson (2012) 

show that, even in commodity-like markets (such as white bread), establishment growth is 

largely driven by rising demand for the plant’s products as it ages.    

 This paper examines the importance of establishment-specific intangible capital 

accumulation over the life cycle for understanding differences in aggregate TFP between poor 

and rich countries.  Specifically, we compare the life cycle of manufacturing plants in India and 

Mexico to that in the U.S.   We choose India and Mexico because they have comprehensive 

micro-data on manufacturing establishments that allows us to measure the life cycle properly.  

Importantly, the data we use captures the large informal sector (as well as the formal 

establishments) in these countries.   Most other available datasets, such as the data on Chinese 

manufacturing we used in Hsieh and Klenow (2009), are inadequate for measuring the life cycle 

as they only survey large establishments.    

 As preliminary evidence, consider the relationship between establishment employment 

and age in India and Mexico shown in Figure 1.  In the U.S., forty year old manufacturing plants 

are almost eight times larger than plants under the age of five in terms of employment.  In India, 

by contrast, old plants are no larger than young plants.  In Mexico, 25 year old plants are more 

than twice the size of new plants, not far from the U.S. pattern for 25 year old plants.  What 

differs between the U.S. and Mexico is that 40 year old plants in Mexico are no larger than 25 

year old plants, while 40 year old U.S. plants are almost four times larger than their 25 year old 

counterparts.  These facts are consistent with establishments accumulating less organization 

capital in India and Mexico than in the U.S.   

 Why would plants in India and Mexico invest less in organization capital?  The returns to 

such investments might be lower there for a multitude of reasons.  Large plants could face higher 

taxes or higher labor costs.  Levy (2008) argues that payroll taxes in Mexico are more stringently 

                                                            
1 See, for example, Dunne, Roberts, and Samuelson (1989) and Davis, Haltiwanger, and Schuh (1996).  Cabral and 
Matta (2003) provide similar evidence for Portugal. 
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enforced on large plants.  Bloom et. al. (2012) suggest difficulty in contract enforcement makes 

it costly to hire the skilled managers necessary to grow in India.  Financial constraints are 

another possibility.  Many authors have modeled the U.S. life cycle as the result of relaxing 

financial constraints as the establishment grows.2   If large establishments in India and Mexico 

still face financial constraints, this would diminish their ability and incentive to grow.  Another 

force might be higher transportation and trade costs within India and Mexico that make it more 

difficult to reach more distant markets.  Consistent with these stories, we find that the gap in the 

average revenue product of resources between high and low productivity establishments is five 

to six times larger in India and Mexico than in the U.S. – as if high productivity establishments 

face higher taxes, factor costs, or shipping barriers in India and Mexico.  

 To gauge the potential effect of the life cycle on aggregate productivity, we examine 

simple GE models based on Melitz (2003) and Atkeson and Burstein (2010).  We focus on three 

mechanisms.  First, if post-entry investment in intangible capital is lower in India and Mexico, 

the productivity of older plants will be correspondingly lower.  Second, lower life-cycle growth 

reduces the competition posed by incumbents for young establishments.  For this reason, slower 

life-cycle growth can boost the flow of entrants, increase variety, and reduce average 

establishment size.  Third and related, a larger flow of entrants may bring in marginal entrants 

who are less productive than infra-marginal entrants.   Based on illustrative model calculations 

incorporating these forces, moving from the U.S. life cycle to the Indian or Mexican life cycle 

could plausibly account for a 25% drop in aggregate TFP. 

 The paper proceeds as follows.  Section II describes the data.  Section III presents the 

basic facts about the life cycle of plants in India, Mexico, and the U.S.  Section IV provides 

suggestive evidence on forces that might be lowering the return to intangible capital in India and 

Mexico.  Section V lays out a GE model of heterogeneous firms with life-cycle productivity to 

illustrate the potential consequences for aggregate productivity.  Section VI concludes. 

 

II. Data 

 To measure the life cycle of a cohort of establishments, we need data that is 

representative across the age distribution.  A typical establishment-level dataset has information 

                                                            
2 Cooley and Quadrini (2001), Albuquerque and Hopenhayn (2002), Cabral and Matta (2003), and Clementi and 
Hopenhayn (2006) are examples of models with this mechanism.   
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only on plants above a certain size threshold.  This is problematic for measuring the life cycle if 

most new establishments are small.  Our analysis focuses on the U.S., Mexico, and India as these 

countries have data covering almost the entire distribution of employment by establishment age.     

 For the U.S., we use data from the Manufacturing Census every five years from 1963 

through 2002.  The U.S. Manufacturing Census is a complete enumeration of manufacturing 

establishments with paid employees.  It does not include manufacturing establishments that do 

not have paid employees.3   The variables we use from the U.S. Census are the wage bill, number 

of workers, value-added, establishment identifier, book value of the capital stock, and industry 

(four digit SIC from 1963 to 1997 and six digit NAICS in 2002).  In each year, there are slightly 

more than 400 industries.  The U.S. Census does not provide information on the establishment’s 

age.  We impute an establishment’s age based on when the establishment appeared in the Census 

for the first time.4  We have data every five years starting in 1963 so we group establishments 

into five-year age groupings.  For our analysis, we will use the Censuses from 1992, 1997, and 

2002 as these are the years with the most complete age information.  We also keep the 

administrative records in our sample.  These are small plants where the Census Bureau imputes 

plant employment and output from payroll data (using industry-wide averages of the ratio of 

output and employment to the wage bill).  In Hsieh and Klenow (2009) we omitted 

administrative records as our focus there was on the dispersion of the ratio of plant output to 

inputs.  Here, our main focus is on plant employment which is not likely to be significantly 

biased in the administrative record establishments.        

 The datasets we use for Indian manufacturing are the Annual Survey of Industries (ASI) 

and the Survey of Informal Establishments of the National Sample Survey (NSS).  The ASI is a 

census of manufacturing establishments with more than 100 employees and a random sample of 

formally registered establishments with less than 100 employees.5  The NSS is a survey of 

informal establishments conducted every five years as one of the modules of the Indian National 

                                                            
3 Such non-employee establishments accounted for only 0.29 percent of total manufacturing sales in 2007. 
 
4 Establishments are defined by a specific physical location.  The establishment identifier remains the same even 
when the establishment changes ownership.   
 
5 According to India's Factories Act of 1948, establishments with more than 20 workers (the threshold is 10 or more 
workers if the establishment uses electricity) are required to be formally registered.  One-third of the formal plants 
with less than 100 workers were surveyed in the ASI prior to 1994-95.  The sampling probability of the smaller 
plants in the ASI decreased (to roughly one-seventh) after 1994-95. 
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Sample Survey.  The ASI and the NSS collect data over the fiscal year (April 1 through March 

30).  We have the ASI for every year from 1980-81 to 2007-2008.  The NSS is only available for 

four years: 1989-1990, 1994-1995, 1999-2000, and 2005-2006.  Our analysis will focus on the 

years for which both the ASI and the NSS are available, and we will refer to the combined 

dataset as the ASI-NSS.    

To make the Indian data comparable to the U.S., we restrict the analysis to sectors that 

are also classified as manufacturing in the U.S. data.6  The variables we use from the ASI and the 

NSS are the number of paid employees, contract workers, unpaid workers, wage and non-wage 

compensation (for the establishments with paid employees or contract workers), total capital 

stock (and two of its components – machinery & equipment and the value of land), value added, 

industry, and establishment age.7  The NSS also separately provides the number of full-time and 

half-time workers.  The ASI and the NSS use the same industry classification (about 400 

industries each year).  Establishment age is available for all years in the ASI but only available in 

1989-1990 and 1994-1995 in the NSS.  Establishment identifiers are provided in the ASI starting 

in 1998-1999; the NSS does not have establishment identifiers.  We also use information in the 

ASI on electricity provided by the plant’s generator and purchased from the electric grid (the 

NSS does not have information on generators).     

 For Mexico, we use data from the Mexican Economic Census.  The Economic Census is 

conducted every five years by Mexico's National Statistical Institute (known by its Spanish 

acronym INEGI).  The Census is a complete enumeration of all fixed establishments in Mexico.   

The only establishments not in the Economic Census are street vendors, which are unlikely to be 

important in manufacturing.  We have access to the micro-data of Mexican Census from 1998, 

2003, and 2008.  To make the Mexican data comparable to the U.S., we restrict our attention to 

establishments in the manufacturing sector.8  The variables we use from this data are the number 

of paid employees, contract workers, unpaid workers, hours worked (for each type of worker), 

                                                            
6 This primarily removes auto and bicycle repair shops that are classified as manufacturing in the Indian data.  
Repair shops account for roughly 20 percent of all establishments in the Indian data. 
 
7 The ASI does not have information on unpaid workers in 1999-2000.  Unpaid workers account for 0.8 to 1.5 
percent of total employment in the ASI plants in 1989-1990, 1994-1995, and 2005-2006.    
 
8 There are two industries classified as manufacturing in 1998 (CMAP 311407 and 321201) but later reclassified as 
agriculture in 2003 and 2008.  We drop these industries from the 1998 sample.   
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wage bill, labor taxes (paid to Mexico’s Social Security Agency) and other non-wage 

compensation, total capital stock, value-added, establishment age, and industry (roughly 350 

industries in manufacturing).  In 2003, we also have information on machinery and equipment 

capital and the value of the land used by the establishment.  Finally, although the Mexican data is 

a complete census, there are no establishment identifiers in the data and there is not enough 

information in the data to link establishments between census years.   

Table 1 presents the number of establishments and total employment in our data.9  We 

focus on establishments rather than firms.  We do not have information on firms in the Indian 

and Mexican data.  The number of workers in India and Mexico includes unpaid and contract 

workers.  According to Table 1, most Indian manufacturing establishments are in the informal 

sector (i.e., in the NSS).  Though informal establishments are smaller, they still account for 

around 75 percent of total manufacturing employment in India.       

     

III. The Life Cycle of Manufacturing Plants 
  
 This section presents the stylized facts on the life cycle of manufacturing establishments 

in India, Mexico, and the U.S.  We control for four digit industries so all the facts we show are 

within-industry patterns, where we present a weighted average across all the industries using the 

value-added share of each industry as weights. 

 We begin by presenting evidence from the cross-section on the relationship between 

average plant employment and age in the cross-section (Figure 1).  The data is from the 1994-

1995 ASI-NSS for India, 2003 Economic Census for Mexico, and 2002 Manufacturing Census in 

the U.S.  In the U.S. cross-section, the average plant over the age of forty is almost eight times 

larger than the average plant under the age of 5.  In contrast, forty year old Indian plants are no 

larger than new plants.  Mexico is an intermediate case: average employment doubles from age < 

5 to age 25 but remains unchanged after age 25.    

 The fact that older plants in India and Mexico are small may not have a large effect on 

aggregate outcomes if there are fewer surviving old plants in India and Mexico.  Exit rates could 

                                                            
9 We checked that the total number of workers in Indian manufacturing in Table 1 (from establishment level data) is 
consistent with data on manufacturing employment from India's labor force survey (Schedule 10 of the NSS).  For 
example, we computed the total number of manufacturing workers in the labor force survey was 35.7 million in 
1999-2000 and 46 million in 2004-2005 from the NSS Schedule 10 micro-data.  The corresponding numbers in 
Table 1 are 37 million in 1999-2000 and 45 million in 2005-2006.    
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be higher in India and Mexico so fewer plants survive to old age.  Figure 2, however, shows that 

exit rates in India and Mexico are generally no higher than in the U.S.10  In addition, if growth 

rates over the life-cycle are highly skewed and only a small number of establishments experience 

high growth rates, the small number of rapidly growing establishments may have an important 

aggregate effect even if the average old establishment is small.  Figure 3 addresses this concern 

by showing the distribution of employment by establishment age.  The employment distribution 

by establishment age is a function of the relationship between the employment-weighted average 

of plant employment by age, the exit probability with age (Figure 2), and the size of each cohort 

at birth.  If the latter two forces do not differ much between the U.S., India and Mexico, then 

differences in the employment distribution by age will be driven by differences in the 

relationship between the employment-weighted average of plant employment and age in the 

cross section. 

It is well known (e.g., Atkeson and Kehoe, 2005) that employment in the U.S. is 

concentrated in older plants.  The bottom panel in Figure 3 illustrates this fact.  Old 

establishments in the U.S. (more than 40 years old) account for almost 30 percent of total 

employment.  Plants less than 10 years old account for slightly more than 20 percent of total 

employment.  India and Mexico look very different in that employment is concentrated in young 

establishments.  Establishments less than 10 years old account for 50 percent of employment in 

India and Mexico, while older plants (older than 40 years) account for less than 10 percent of 

employment.   In sum, these facts indicate that just as the un-weighted average of plant-

employment is increasing in age in the U.S. and not in Mexico and India (Figure 1), the 

employment-weighted average of plant employment is also increasing with age in the U.S but 

not in Mexico and India.11     

 These patterns are remarkably robust.  We see a similar relationship between average size 

and age in all the other years for which we have data, when we measure plant size by value 

added (instead of employment), or when we use U.S. value added shares to aggregate the 

                                                            
10 This allays a concern about combining NSS and ASI data.  Namely, it is possible that ASI respondents report their 
establishment’s age from when it became formal.  We might therefore understate the age of larger ASI plants 
relative to smaller NSS plants, biasing our portrait of life cycle growth.  If this was a major issue, however, then we 
would expect higher exit rates for Indian plants than U.S. plants ceteris paribus, which we do not see in Figure 2. 
 
11 Figure 3 also diminishes the concern that our data does not include street vendors in Mexico and non-employee 
establishments in the U.S.  Although there are many such establishments, they are probably less important in terms 
of employment so that including them would not materially change the distribution of employment by age. 
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patterns within four digit industries in India and Mexico.  The pattern also holds across most 

sectors.  For example, in 17 out of the 19 two-digit industries in India, average employment is 

less than 20 percent higher for plants more than 40 years old compared with plants under the age 

of five.  In the U.S., average employment is more than seven times higher in older plants (more 

than 40 years old) in 17 out of 19 two-digit industries.  Also, we see flat size with respect to age 

in the formal plants of the Indian ASI alone, just as in the pooled NSS-ASI data.12  

 Although suggestive, the relationship between plant employment and age in the cross-

section conflates size differences between cohorts at birth and employment growth of a cohort 

over its life cycle.  Ideally we want to measure the growth of a cohort of plants as it ages, rather 

than make inferences about the life cycle from cross-sectional evidence.  We have establishment 

data from 1963 to 2002 for the U.S. so we can follow a cohort over 40 years in the U.S.  In India, 

we have data on establishment age only for 1989-1990 and 1994-1995 so we can only follow 

each cohort over these five years.  In Mexico, we have data for 1998, 2003, and 2008 so we can 

follow cohorts for up to ten years.   

 Given these data limitations, we measure the "life cycle" in the following manner.  In 

India, we compare the average size of establishments of a given cohort in 1989-1990 with the 

size of the same cohort five years later (in 1994-1995).   We do this for all the cohorts grouped 

into five-year age bins.  If we assume that every cohort experiences the same life-cycle growth, 

we can impute the life cycle from the growth in average size of the different cohorts from 1989-

1990 to 1994-1995.  For comparability with the Indian data, we follow the same procedure for 

Mexico and the U.S.  For Mexico, we impute the life cycle from the employment growth of each 

cohort from 1998 to 2003 and for the U.S. from the employment growth from 1992 to 1997.13   

 Figure 4 presents the life cycle of plant employment calculated in this manner.  In India, 

the over-time evidence suggests that, by age 35, average plant employment falls to one-fourth of 

                                                            
12 An interesting question is whether the life-cycle of firm employment differs between the U.S. and Mexico and 
India.  We do not have data on firms in the Mexican and Indian data so we cannot answer this question.  However, 
starting in 2001-2002, the Indian ASI provides information on the number of other establishments owned by the 
same firm.  This information indicates that an average 40 year old plant is owned by a firm that operates 0.76 more 
plants than the owner of a newborn plant.  In addition, a regression of log employment on the number of additional 
establishments operated by the plant's owner yields a coefficient of 0.068 on the number of additional 
establishments.  These two numbers suggest that employment of the average 40 year old firm is 0.81 
(0.76*exp(0.068)) larger than employment of a newborn firm.       
 
13 We did not use the employment growth from 1997 to 2002 in the U.S. because the U.S. industry classification 
changed from 1997 to 2002. 
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its level at birth.  The evidence from cross-sectional data indicated a smaller decline in India.  

For the U.S., the over-time evidence suggests that average plant size increases by a factor of ten 

from birth to age 35; the cross-sectional evidence suggested less than an eight-fold increase.  In 

Mexico, the over-time evidence is similar to what the cross-section implied for the increase in 

plant size with age. 

We emphasize again that imputing the life cycle from two cross-sections is valid only if 

all cohorts experience the same life-cycle growth.  We can check this assumption in the U.S. and 

Mexico.  In the U.S., when we follow the cohort of new establishments in 1967 (recalling that 

we have to impute age based on when the establishment appears in the census for the first time) 

until 1997, we get estimates of the life cycle that are similar to that imputed from employment 

growth from 1992 to 1997.  In Mexico, we can also impute the life cycle using the employment 

change from 2003 to 2008.  Again, we get estimates similar to those shown in Figure 4.     

 Growth in average employment of a cohort can be driven by survivor growth and/or by 

the exit of small establishments.  Several authors, including Jovanovic (1982), Hopenhayn 

(1992), Ericson and Pakes (1995) and Luttmer (2007), model the evolution of the U.S. life cycle 

via the selection mechanism rather than survivor growth.  We now explore whether the selection 

effect could explain the difference in the life cycle between the U.S. and India.  Figure 5 presents 

the growth in average employment of all establishments (as in Figure 4) and the growth of 

surviving establishments in India and the U.S.  The U.S. data is from the Manufacturing 

Censuses of 1992 and 1997 and the Indian data is from the ASI (the survey of formal 

establishments) from 1998-1999 to 2003-2004 (we have establishment identifiers in the ASI 

starting in 1998-1999).  The ASI is not representative of all Indian manufacturing as it only 

includes formal establishments, but we think the ASI evidence is still useful.  In the U.S. and in 

formal Indian plants, survivor growth is lower than overall growth, suggesting that exit is 

negatively correlated with size in both countries.  The contribution of selection to growth in the 

average size of a cohort is about the same in formal Indian plants as in U.S. manufacturing.   

 We reiterate that the Figure 5 evidence is not conclusive as we do not have evidence from 

informal Indian plants.  However, it suggests that the flatter life cycle in India is not because 

larger plants are more likely to exit (and smaller plants less likely to exit) in India compared to 

the U.S.   Instead, what appears to differ between India and the U.S. is the growth of incumbents.  

In the U.S., surviving establishments experience substantial growth.  In India, incumbent plants 
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become smaller with age.  This fact points to the anemic growth of incumbents in India as a 

force for the flat life cycle in Indian plants.   

 

IV. Why Don’t Plants Grow in India and Mexico?  
 
 In this section, we impose more structure on the data to "explain" the low employment 

growth of Indian and Mexican plants with age.  First, we show that low employment growth can 

largely be attributed to low productivity growth with age.  Second, we show that the return on 

investments to boost plant productivity may be lower in India and Mexico, and provide 

suggestive evidence on forces that might be behind the lower returns.   

 

Productivity over the life cycle 

 Consider a closed economy version of Melitz (2003).  Suppose that aggregate output at 

time t is given by a CES aggregate of the output of individual establishments: 
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Here i indexes the establishment, a  refers to the establishment’s age, aN  the number of 

establishments of age a  (we suppress the subscripts for sector and time when possible), ,a iY  is 

the value added of plant i of age a, and 1   is the elasticity of substitution between varieties. 

 Each plant is a monopolistic competitor choosing its labor and capital inputs (and 

therefore its output and price) to maximize current profits 

 

(1.2) 
, , ,, , , , ,(1 ) (1 ) (1 )

a i a i a ia i Y a i a i L a i K a iP Y wL RK         , 

 

where ,a iP  is the plant-specific output price, ,a iL  is the plant’s labor input, ,a iK the plant’s capital 

stock, and w and R are the common, undistorted costs of labor and capital.  Here 
,a iY denotes an 

establishment-specific revenue distortion, 
,a iK a capital distortion, and 

,a iL a labor distortion.  
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Such wedges may arise for any number of reasons, such as taxes, markups, adjustment costs, 

transportation costs, size restrictions, labor regulations, and financial frictions.14 

Suppose, further, that plant output is given by a Cobb-Douglas production function 

 
(1.3) 1

, , , ,a i a i a i a iY A K L  , 

 
where ,a iA  is plant-specific productivity.  ,a iA  is process efficiency here for concreteness, but in 

terms of the available data it is observationally equivalent to plant-specific quality or variety 

under certain assumptions (see the appendix in Hsieh and Klenow, 2009).   

The equilibrium revenue and employment of the plant are then proportional to 
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 is a geometric average of the 

average revenue products of capital and labor.   Equation (1.5) holds if the ratio 
, ,

/
a i a iK L  does 

not vary across plants.  See Hsieh and Klenow (2009) for additional details.  We are building on 

the work of Foster, Haltiwanger and Syverson (2008), who distinguish between TFPR (revenue 

TFP, ,a i here) and TFPQ (quantity TFP, ,a iA here).   

 As shown in (1.4) and (1.5), a plant’s revenue and employment is increasing in its 

productivity A and decreasing in its average revenue product  .  More productive plants have 

lower costs and therefore charge lower prices and reap more revenue (given 1  ), for a given 

 .  Plants with a higher  charge higher prices and earn less revenue, for a given level of 

productivity.  The growth of plant revenue and employment with age then depends on the growth 

of plant productivity with age and the extent to which plant average products change with age.   

                                                            
14 For some recent examples see Restuccia and Rogerson (2008), Guner, Ventura and Xu (2008), Midrigan and Xu 
(2010), Buera, Kaboski and Shin (2011), Peters (2011), Bhattacharya, Guner and Ventura (2011), and Moll (2012).  
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  We need data on ,PY ,K  ,L  and   to measure plant productivity and average products.  

We measure PY as plant value-added, K  as the book-value of the plant’s capital stock, and 

1   as the U.S. wage-bill share of the sector.  In Hsieh and Klenow (2009), we measure L  as 

the plant’s wage-bill.  We do not do so here because a large number of establishments in India 

and Mexico do not have paid workers.  For the U.S. we measure plant employment as the total 

number of workers.  For India we measure employment in the ASI plants as the number of 

workers and in the NSS plants as the number of full-time equivalent workers (we assume a part-

time worker is equivalent to half a full-time worker).  For Mexico we measure employment as 

the total number of hours worked.     

Using this data, Figure 6 plots the evolution of plant productivity over the life cycle.  

More exactly, Figure 6 plots life cycle productivity growth relative to the productivity growth of 

entering cohorts, as the productivity of the youngest cohort is normalized to one in each year.  

For Mexico and the U.S. productivity roughly tracks the life cycle of plant size.  For India, it 

looks quite different.  Plant productivity in India increases with age, roughly doubling by age 35, 

while employment falls with age (Figure 4).  From equation (1.5), average products must be 

rising with age in India to explain these two facts.   Figure 7 plots the geometric average of the 

average product of capital and labor over the life cycle.  In India, average products of capital and 

labor are eight times higher in 35 year old Indian plants compared to new plants.  Older Indian 

establishments are smaller than they would be in an economy where marginal products were 

equalized across plants by age. In Mexico and the U.S., the average product of 35 year old plants 

is roughly the same as that of new plants.  Because of this, in Mexico and the U.S. employment 

grows with age at the same rate that productivity grows with age.     

 We summarize the key findings.  From birth to age 35, plant employment increases by a 

factor of ten in the U.S., a factor of two in Mexico, and declines in India.  In turn, these 

differences can be traced to the fact that plant productivity increases by a factor of eight in the 

U.S. by age 35, vs. only by a factor of two in India and Mexico.  Why do Indian and Mexican 

establishments experience so little productivity growth over their life cycle?  This is the question 

we turn to next.      

 

Returns to Investment in Plant Productivity 
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 Consider again the closed-economy Melitz model of the previous section, only now with 

endogenous productivity growth.  Plants are born with a random draw of initial productivity.  

Incumbents decide how much to invest to boost future productivity.  For simplicity, assume no 

uncertainty and that plants live for two periods.  (The next section adds uncertainty and many 

periods.)  The increase in variable profits from a proportional increase in productivity is 

 
1

.i i
i

i i

A
MB

A







 
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As shown, the return from investment in organization capital is increasing in the ratio of 

productivity to  .  Thus the elasticity of  with respect to productivity will affect the 

profitability of investing in higher productivity.  To fix ideas, suppose we parameterize the 

relationship as i iA   .  The return from a proportional increase in productivity is then 

(1 )( 1)
i iMB A    , which is decreasing in   (the elasticity of  with respect to productivity)  for 

a given level of productivity.   

Figure 8 plots  vs. productivity in the cross-section for each of our three countries.  

 rises much more steeply with productivity in India and Mexico than in the U.S.  In India and 

Mexico, a doubling of establishment productivity is associated with a 50-60 percent increase in 

the average product of factor inputs.  In the U.S. a doubling of productivity is associated with a 

10 percent gap in average products.  Rising average products could reflect larger markups in high 

productivity plants, but this interpretation would imply that Indian and Mexican plants have 

more incentive to grow.  We instead pursue the possibility that more productive plants face 

higher marginal input costs or higher effective tax rates in India and Mexico. 

We start by looking at the convexity of the cost of labor.  There is a large literature on 

contractual frictions that increase the cost of wage labor relative to family labor.   Since the 

marginal worker for a large plant is likely to be a wage worker, these frictions increase the 

marginal cost of labor for large plants relative to smaller plants with family workers.  Labor 

regulations and labor taxes that apply to large firms (or that small firms find easy to evade) could 

also raise the cost of labor for large firms.  Indian labor regulations emphasized by Besley and 

Burgess (2004) are a prime example.  In Mexico, Levy (2008) argues that payroll taxes (roughly 

32 percent of the wage bill) are more stringently enforced on large plants, as are other taxes 
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(Anton, Hernandez and Levy, 2012).  Bloom et. al. (2012) argue that delegation costs raise the 

costs of managers in India.  In an Appendix we sketch a model where managerial inputs are 

important for large plants but less important for smaller plants.  A higher cost of managers in 

India and Mexico would make the effective cost of labor more convex than in the U.S.   

If labor costs are more convex with size in India and Mexico, we expect to see more 

plants choosing to remain small and informal.  Table 2 presents details on the prevalence of 

informal and family-owned establishments in the Indian and Mexican manufacturing sectors.  

Here, we define family establishments in India and Mexico as those that only employ unpaid 

workers and informal establishments as those not registered in India.   For Mexico, we define 

informal establishments are those not registered with Mexico’s Social Security Agency (IMSS).  

Establishments that only employ unpaid workers account for 72 percent of employment in India 

in 1989-1990.  The employment share of family owned plants in Mexico is lower.  But note that 

informality has increased in Mexico.  For example, the employment share of family plants 

increased from 10 in 1998 to almost 30 percent by 2008.   

The gap in average wages between large and small plants (Figure 9) provides another 

piece of evidence.  For the U.S., we see the well known fact that average wages are higher in 

larger establishments.  Average wages are also higher in large plants in India and Mexico, but the 

gap in average wages between large and small establishments there is almost twice that observed 

in the U.S.   This evidence suggests that larger establishments may pay higher efficiency wages 

due to monitoring costs or that the cost of skilled managers is higher in India and Mexico.   

 In the U.S. there is some evidence that larger establishments have better access to capital, 

and many papers have modeled the U.S. life cycle as driven by the endogenous relaxation of 

financial constraints as the establishment grows.  If financial markets do not work as well in 

India and Mexico, this process could be attenuated there.  Frictions in land markets may also 

prevent high productivity plants from physically expanding as much as they would like.  Figure 

10 plots the average product of land (top panel) and machinery and equipment (bottom panel) 

against plant employment in India and Mexico.  The average product of land is rising with 

establishment size in India.  This could be evidence of technological differences (larger 

establishments use less land-intensive techniques), but it can also be evidence that frictions to 

land reallocation raise the marginal cost of land faced by high productivity plants.  The Mexican 

data speak less clearly on the importance of land market frictions.  Turning to the cost of 
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machinery and equipment, one might expect larger establishments to be more capital intensive, 

either because they use more capital-intensive technologies or because they face a lower cost of 

capital.  This, however, does not appear to be the case.  The average product of machinery and 

equipment is increasing with size in Mexico.  And in India the average product of machinery and 

equipment is marginally higher for larger plants.    

 The cost of intermediate inputs can also be more convex in India and Mexico.  Consider 

electricity.  The survey of formal establishments in India (the ASI) explicitly asks whether an 

establishment has an electricity generator and the quantity of electricity produced from the 

generator.15   In 1994-1995, for example, about one-third of formal Indian establishments report 

owning a generator.  Figure 11 plots the establishment's electricity purchased from the grid as a 

percent of its total consumption of electricity against the establishment's employment.  We 

present this information separately for all ASI plants and for ASI plants that report owning a 

generator.  Looking at all plants, small plants purchase virtually all their power from the grid, 

while the largest plants rely on generators for about 30 percent of their electricity use.   When the 

sample is restricted to establishments that operate a generator, small plants obtain roughly 20 

percent of their electricity from their generator.  Importantly, this share rises to almost 40 percent 

for large plants.  This evidence suggests that the supply of power from the electric grid is limited 

so that larger plants must rely on higher unit-cost generators. 

The returns to innovation could also be concave in India and Mexico compared to the 

U.S.  Income or sales taxes that apply to large establishments are an obvious candidate 

explanation.  If corruption disproportionately affects large establishments, this would also have 

the same effect.16  Another possibility is that the cost of expanding to new markets may be higher 

in India and Mexico.  Holmes and Stevens (2012) show that, in the U.S., larger establishments 

sell to more distant domestic markets.  In the Appendix we sketch a model with a continuum of 

markets that differ in distance from plants.  In this framework, higher shipping costs per unit of 

distance lowers the number of markets a firm with a given level of productivity serves.  In turn, 

this lowers the returns from investing in higher productivity.   

                                                            
15 There is no equivalent information in the Indian NSS or the Mexican Census. 
 
16 La Porta and Shleifer (2008) document that larger formal establishments spend more on bribes (as a share of 
revenue) than do smaller and informal establishments.    
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  The examples we discussed in this section are meant to be illustrative.  Surely other 

mechanisms play a role as well.  Identifying which mechanisms are important is a useful 

direction for future work, but we will not attempt to do so here.  Instead, we merely want to 

stress how the elasticity of  with respect to productivity, whatever the source, affects the 

incentive to invest in projects that boost firm productivity.   The cross-sectional relationship 

between   and productivity is consistent with the hypothesis of lower returns to investing in 

productivity in Mexico and India than in the U.S.  In the next section, we will turn to an 

assessment of the implications for aggregate TFP. 

 
V. Impact of the Life Cycle on Aggregate Productivity 
  
 We now illustrate the potential impact of U.S. vs. Indian and Mexican life cycle 

productivity on the level of aggregate productivity.17  We do this for a sequence of simple GE 

models built around monopolistic competitors with life cycle productivity.  In addition to Melitz 

(2003), we follow Atkeson and Burstein (2010) in many of our modeling choices.  We assume: 

 
(a) a closed economy 

(b) no aggregate uncertainty 

(c) additively time-separable isoelastic preferences over per capita consumption 

(d) constant exogenous growth in mean entrant productivity A 

(e) labor as the sole input (including for entry and innovation when endogenous) 

(f) fixed aggregate supply of labor (equal to the population) 

(g) exit rates as a fixed function of a plant’s age (and A if it differs within cohorts) 

(h) t as a fixed function of a plant’s age (and A if it differs within cohorts) 

 
These assumptions imply two convenient properties about the resulting equilibria: 

 
(i) a stationary distribution of plant size in terms of labor 

(j) a balanced growth path for aggregate TFP, the wage, and per capita 

output/consumption and a fixed real interest rate 

 
                                                            
17 Cole, Greenwood and Sanchez (2011) also construct a quantitative model to fit our facts for India, Mexico and the 
U.S.  In their model financing frictions inhibit incumbent technology adoption in India and Mexico. 
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See Luttmer (2010) as well as Atkeson and Burstein (2010) for the derivations. 

For each model, aggregate TFP is the same as output per capita, as there is no capital.  

Aggregate TFP can therefore be expressed as 

 

(1.6) 
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where ,, , a ia i a iA LY   and , , ,, , ,/a i a i a ia i a i a iP Y L P A   .  As these models do not have capital, we 

assume a single revenue distortion hits each plant, with average value  .18 

In (1.6), /YL L is the fraction of the labor force working to produce current output.  The 

total workforce is fixed at Y RL L L   each period.  YL  is the sum of production labor across all 

plants, and RL  is the number of people working in the research sector to improve process 

efficiency for incumbents and come up with new varieties for entrants.     

 We start by assuming the flow of entrants is fixed over time, and requires no labor.  And 

we first imagine A varies only by age.  All entrants have the same A, and then this productivity 

grows exogenously as an incumbent ages.  Exit rates are exogenous, but depend on age.  All 

firms face the same  . In this case we simply get 

(1.7) 
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Implicit in (1.7) is that labor is allocated to efficiently exploit variation in A across cohorts.  We 

calculate aggregate TFP from (1.7) using U.S. A by age and, separately, with Indian and Mexican 

A by age.  We fix the mass of entrants in each year to 1 1N  , and keep the exit rates by age at 

the U.S. levels displayed in Figure 2.19  Table 3 lists the parameter values chosen for this model 

and subsequent models. 

                                                            

18 In terms of the earlier notation, 
,

,

1

1
a i

a i
Y







.  And  
, ,

1 ,

1 1aN
a i a i

a i a i

w
P Y

PY














. 

 
19 For the age 35+ cohorts, we estimate the exit rate and the growth rate of A by comparing the 35+ group to the 30+ 
group.  We assume all plants die by age 100 for computational convenience. 
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The first column of Table 4 reports that, in this simplest GE model, going from U.S. to 

Indian life cycle A growth lowers average TFP by 28%.  To put this into perspective, aggregate 

TFP in Indian manufacturing is about 62% below that in the U.S. (see Hsieh and Klenow, 2009).  

So slower life cycle TFPQ growth might account for about one-third of the aggregate TFP 

difference (ln(0.72)/ln(0.38) ≈ 0.33).   

This calculation assumes no response of entry to life cycle growth.  In the data, average 

plant size is smaller in India (and Mexico) than in the U.S.  Figure 12 plots the employment 

distribution by plant size in the three countries to illustrate this fact.  As exit rates are no lower in 

India and Mexico, their entry rates must be higher.  This might be due, in part, to the different 

life cycle growth of Indian and Mexican plants.  In a Melitz-style model with incumbent 

innovation, Atkeson and Burstein (2010) find that slower productivity growth of incumbents can 

encourage entry.  When entrants face less competition from efficient incumbents, they enjoy 

higher discounted profits ceteris paribus.  Entrants will become incumbents, of course, but they 

discount their future profits at the time of entry.  Entry therefore increases to maintain the free 

entry condition (zero discounted profits) in equilibrium.  Atkeson and Burstein (2010) find that, 

in response to higher trade barriers, the benefits of higher entry can largely offset the costs of 

lower average A among operating firms.20   

The second column in Table 4 shows what happens with endogenous entry when moving 

from U.S. to Indian life cycle growth.  Average firm A falls by the same amount, 28%, by 

construction.  But now entry rises 21%.  The net effect on aggregate TFP is still negative at -

26%.  Even with our low substitutability ( 3  ) and therefore a strong love of variety, 21% 

more variety lifts aggregate TFP by less than 10%.  And the additional entry diverts some labor 

from goods production, lowering the share of people producing current output by over 6%.  Still, 

on net the variety response does offset some of the TFP loss from lower life cycle productivity 

growth.  Fattal Jaef (2012) obtains a similar variety offset when considering the costs of rising   

with age in a closely related model. 

Two comments about the variety offset deserve mention here.  First, the model assumes a 

linear entry technology.  Doubling entry requires twice as much entry labor.  If there are instead 

diminishing returns of some form, then variety might not respond as flexibly.  We will provide a 

                                                            

20 One can re-write (1.7) as 
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specific example below.  Second, the model assumes a final goods sector which buys some of 

every variety.  Yet many small manufacturers in India – for example those making food and 

furniture – may sell to only a small set of local consumers.  Li (2011) provides evidence that 

households in India do not consume all varieties of food, though richer and urban families 

consume more varieties than poorer and rural households do.  Arkolakis (2010) posits convex 

costs of accessing buyers within countries; see the model in our Appendix inspired by his work. 

We next add productivity (A) dispersion within age cohorts, and distortions in the form of 

a revenue tax rate   that is increasing in A.   In India, the slope of   with respect to A is much 

steeper at 0.56 than the U.S. slope of 0.13.21  Again, this might reflect some combination of tax 

rates, size restrictions, labor regulations, markups and so on.  The third column of Table 4 shows 

that going from U.S. to Indian life cycle productivity and distortions results in 51% lower 

average firm TFP.  This loss is much higher than in the previous column because of the static 

misallocation created by greater   dispersion across plants with different A levels in India than 

in the U.S.22  Entry surges by 34%.  As a result the share of the workforce producing output falls 

10%.  The net effect is a drop in aggregate TFP of 49%.   

So far we have set the initial entrant A distribution to match the U.S. data.  But across 

young plants, A is more dispersed in India and Mexico than in the U.S.  The standard deviation 

of log A is 1.25 in India vs. 1.01 in the U.S. for plants age 0-4.  In Mexico, the standard deviation 

log A is 1.46.  Greater entrant A dispersion in India and Mexico could be a byproduct of greater 

entry there.  To illustrate this possibility, suppose there is a fixed mass of potential entrants as in 

Chaney (2008).  These potential entrants observe their A ex ante.  Instead of a free entry 

condition, wherein expected profits are zero for all entrants, there is a marginal A entrant with 

zero discounted profits.  All those with initial A above the zero-profit threshold enter and earn 

positive discounted profits.  The penultimate column of Table 4 considers this case.  We 

calibrated the mass of potential entrants to match the A dispersion in India when we go from U.S. 

A  and   to Indian A and  .  As shown, we obtain a larger drop in aggregate TFP of -64% (vs. 

                                                            
21 If  increases too rapidly with A, then plant employment is actually decreasing in plant A.  The cutoff elasticity is 
( 1) /  , which is 2/3 when 3  .  Given the elasticity is 0.56 in India, we do observe rising employment with 

respect to A in India.  But the elasticity is 0.69 in Mexico, so there we actually infer falling employment in A. 
 
22 Although similar to the 40-60% range in our earlier (2009) paper, they are not exactly comparable.  There we 
considered going from Indian to U.S.  dispersion, including  dispersion that did not relate to either A or age.  And 
we held fixed the distribution of A in our calculation, whereas here we allow A to evolve differently with age.   
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49% in the previous column).  The reason is that the average A of entrants falls, whereas it was 

previously held fixed.  This helps drag down the average A of all plants by over 73% (vs. the 

51% fall with a constant quality of entrants).  Variety is up 50%, lowering plant size in the 

direction of India vs. the U.S. (Figure 12).  The calibrated entry cost is now extremely small to 

explain why the low A marginal entrant has zero profits, so the surge of entry in this 

counterfactual requires little extra labor devoted to entry.  But the net effect is still a much bigger 

drop in overall TFP.  Thus endogenous entrant productivity could lead to even bigger TFP losses 

from slower life cycle productivity growth. 

 The final column in Table 4 endogenizes incumbent A growth a la Atkeson and Burstein 

(2010).23  Here incumbents choose the probability q of taking a proportional step up vs. down in 

their A.  (We use Atkeson and Burstein’s step size, chosen to match the 25% standard deviation 

of employment growth of large plants in the U.S.)  The marginal cost of this investment is 

 

(1.8)    , ,

1

1
, ,, ? aa i a i a iiMC A h Aq exp b q    

 

In this formulation, it is exponentially more costly for higher A plants to boost their A by a given 

percentage.   Atkeson and Burstein make this assumption to satisfy Gibrat’s Law (a plant’s 

growth rate is uncorrelated with its initial size) for large plants.  This convex cost of process 

innovation is counterbalanced by the greater incentive of big plants to innovate, as gains are 

proportional to a plant’s size.  We choose the levels of  h and b to fit A by age in the U.S.  We 

then gauge the effect of moving from the U.S. to Indian joint distribution of  with A and age. 

The steeper slope of   with respect to A in India discourages incumbent innovation in the 

same way that trade barriers do in Atkeson and Burstein’s analysis.24   The result is 53% lower A  

for the average plant.  This is similar to what we imposed in the exogenous life cycle growth 

column.  Thus the size distortions seen in India successfully induce the low life cycle 

productivity growth seen in India in this model.  As entrants have less competition from 

incumbents, entry rises 62%.  The share of the population working falls over 9%, even though 

some labor is freed up from doing innovation for incumbents.  Aggregate TFP falls 46%.  Unlike 
                                                            
23 For simplicity we revert to zero expected profits for all entrants in this case. 
 
24 Again, this hinges on the exact source of rising  with respect to A in India.  We have modeled it as rising tax 
rates.  Rising markups, for example, might have ambiguous incentives for incumbent innovation.    
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Atkeson and Burstein, the distortions hitting incumbents are not fully offset by entry.  The reason 

is that we consider much larger distortions – based on Indian data – than the tariffs Atkeson and 

Burstein considered.  Here entry is a poor substitute for such low innovation by incumbents. 

Table 5 repeats the counterfactual calculations using the plant-level patterns from 

Mexico.  Going from the U.S. to Mexican life cycle lowers aggregate TFP at least as much as in 

the Indian simulations.  Here the endogenous innovation scenario actually overdoes it, generating 

unrealistically low life cycle growth for Mexico. 

 

VI. Conclusion 

 
In Hsieh and Klenow (2009), we provide suggestive evidence that holding the 

distribution of plant productivity fixed, resource misallocation between existing plants can 

account about one-third of the gaps in aggregate manufacturing TFP between the U.S. and 

countries such as China and India.  One way to interpret this evidence is that, although 

differences in the extent of resource misallocation are important, the differences in plant 

productivity (which we held fixed) account for most of the gap in aggregate TFP between poor 

and rich countries. 

In this paper, we take up the question left unanswered in our previous work.  Why is 

average plant productivity lower in poor countries?  We argue that a certain type of misallocation 

– specifically misallocation that harms large establishments – can discourage investments that 

raise plant productivity and thus lower the productivity of the average plant in poor countries.  A 

key fact consistent with this interpretation is that manufacturing plants in the U.S. grow with age 

while manufacturing plants in Mexico and India exhibit little growth in terms of employment or 

output.  We use some simple GE models to show that lower life-cycle growth in Mexico and 

India can have important effects on aggregate TFP.  Moving from the U.S. life cycle to the 

Indian or Mexican life cycle could plausibly produce a 25% drop in aggregate TFP. 

An important question is what exactly are the barriers facing larger plants in India and 

Mexico.  We provide suggestive evidence on a number of possible barriers, such as bigger 

contractual frictions in hiring non-family labor, higher tax enforcement on larger firms, financial 

frictions, difficulty in buying land or obtaining skilled managers, and costs of shipping to distant 

markets.  We hope to investigate these potential driving forces systematically in future work.   
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Table 1:  Data 
 

Indian Annual Survey of Industries and National Sample Survey 
  # Establishments  

(Raw Data) 
# Establishments 

(w/ Sampling Weights) 
# Workers 

(w/ Sampling Weights) 

  ASI  NSS  ASI NSS ASI NSS

1989‐90  45  97  90 13,760 6,902  25,764
1994‐95  52  159  107 12,296 7,689  20,570
1999‐00  24  55  117 14,032 7,906  29,109
2005‐06  42  83  125 17,054 8,810  36,408

 
Mexican Economic Census 

  # Establishments # Workers
1998  344 4,226
2003  329 4,199
2008  437 4,661

 
United States Manufacturing Census 

  # Establishments # Workers

1992  371 16,949
1997  363 16,805
2002  351 14,664

 
Note:  Units in thousands
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Table 2:  Informal Workers and Establishments in India and Mexico 
 

  Unpaid Workers Informal Establishments  

  % Workers % Establishments % Workers  % Establishments

India   

1989‐90  71.9 94.1 78.9 99.4
2005‐06  62.0 90.9 80.5 99.3
   

Mexico   

1998  10.2 55.0 14.8 75.6
2008  29.7 60.0 30.4 87.1

 
Note:  % workers is percent of unpaid workers or workers in informal establishments as share of total workers. Informal 
establishments defined as establishments not formally registered (in India) or not registered with Social Security Agency (in Mexico).  
Sources:  ASI‐NSS (India) and Economic Census (Mexico). 
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Table 3:  Parameter Values 
 

Parameter  Definition  Value or Target 

     
   Elasticity of substitution between varieties  3 for all models

ef   Entry costs (in terms of labor)  Average workers per plant in the U.S.

eg   Growth of mean of entrant ln(A)  2.1% per year for all models (U.S. average TFP growth)

,a iA   Productivity across and within age groups  Matches growth for each 5 year age cohort in the U.S. or India      

,a i   Exit by age, productivity  Matches average rate for each 5 year age cohort in the U.S.,   

and the slope of exit with respect to ln(A) in the U.S. (‐0.0225) 

,a i   Tax rate on revenue by age, productivity  Matches average ln(τ) in 5 year cohorts in the U.S. or India;         
slope of ln(τ) wrt ln(A) in the U.S. (0.13) or India (0.56) 

e   S.D. of entrant ln(A)  1.01 (when not zero) to match U.S. entrant A dispersion 

h   Level parameter in the R&D cost function  Set with b to match average U.S. A growth from age 0 to 30

b   Convexity parameter in the R&D cost function  Set to 100 to roughly match average Indian A growth by age

   Coefficient of relative risk aversion  2 for all models

   Discount rate  Always 0.8% per year to arrive at a real interest rate of 5%
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Table 4:  % changes when going from U.S. to Indian Life Cycle 
 

  
Fixed 
Entry 

 
Free 

Entry 

 
τ and A 

Dispersion 
 

 
Endogenous 

Entrant  
Quality 

 

 
Incumbent 
Innovation 

      
Weighted Average A -28.5% -28.5% -51.3% -73.5% -53.3% 

Entry 0% +21.5 +33.6% +50.0% +62.5% 

(Production Workers)/Workforce 0% -6.2% -9.9% -0.0% -9.6% 

Aggregate TFP -28.5% -26.1% -49.3% -63.9% -46.2% 

      

Model  Ingredients      
 
     A variation by: 

 
Age 

 
Age 

 
Age, WITHIN 

 
Age, Within 

 
Age, Within 

      
     τ variation by: None None Age, WITHIN Age, Within Age, Within 

     Free Entry No YES Yes Yes Yes 

     Endogenous Entrant Quality No No No YES No 

     Incumbent Innovation No No No No YES 

 
Source: Author calculations using code adapted from Atkeson and Burstein (2010).  Exit varies by both age and A as in the U.S. 
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Table 5:  % changes when going from U.S. to Mexican Life Cycle 
 

  
Fixed 
Entry 

 
Free 

Entry 

 
τ and A 

Dispersion 
 

 
Endogenous 

Entrant  
Quality 

 

 
Incumbent 
Innovation 

      
Weighted Average A -28.3% -28.3% -63.8% -80.5% -75.6% 

Entry 0% +18.8 +14.9% +42.5% +26.4% 

(Production Workers)/Workforce 0% -5.5% -5.1% -0.0% -2.3% 

Aggregate TFP -28.3% -26.1% -63.2% -74.6% -73.2% 

      

Model  Ingredients      
 
     A variation by: 

 
Age 

 
Age 

 
Age, WITHIN 

 
Age, Within 

 
Age, Within 

      
     τ variation by: None None Age, WITHIN Age, Within Age, Within 

     Free Entry No YES Yes Yes Yes 

     Endogenous Entrant Quality No No No YES No 

     Incumbent Innovation No No No No YES 

 
Source: Author calculations using code adapted from Atkeson and Burstein (2010).  Exit varies by both age and A as in the U.S.   
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 Figure 1:  Plant Employment by Age in the Cross‐Section 
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Sources: 1994‐1995 ASI‐NSS (India), 2003 Economic Census (Mexico), and 2002 Manufacturing Census (U.S.).
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Figure 2:  Exit Rate by Age 
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Notes:  Exit Rate calculated from 1992 to 1997 (U.S. Manufacturing Census), 1989‐1990 to 1994‐1995 
(India ASI‐NSS), and 1998 to 2003 (Mexican Manufacturing Census).   
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Figure 3:  Employment Share by Age 
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Sources: 1994‐1995 ASI‐NSS (India), 2003 Economic Census (Mexico), and 2002 Manufacturing Census 
(U.S.). 
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Figure 4:  Employment Growth over the Life‐Cycle  
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Notes:  Employment growth with age imputed from 1992 and 1997 U.S. Manufacturing Census, 1998 and 2003 Mexican Economic Census, and 1989‐1990 
and 1994‐1995 Indian ASI‐NSS.  
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Figure 5:  Employment Growth over the Life‐Cycle 
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Note:  Employment growth with age imputed from 1992 and 1997 U.S. Manufacturing Census and 1998‐
89 and 2003‐2004 Indian ASI.  Survivors are plants that exist in the two years.   
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Figure 6:  Productivity Over the Life‐Cycle 
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Note:  :  Productivity growth with age imputed from 1992 and 1997 U.S. Manufacturing Census, 1998 and 2003 Mexican Economic Census, and 1989‐1990 
and 1994‐1995 Indian ASI‐NSS.  
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Figure 7:  Average Product Over the Life‐Cycle 

US

Mexico

India

1/2

1

2

4

8

A
ve

ra
g
e 

P
ro

du
ct

 (
A
ge

 <
 5

=
1
)

<5 5-9 10-14 15-19 20-24 25-29 30-34 >=35
 

Age

  
Notes:  Average Product growth with age imputed from 1992 and 1997 U.S. Manufacturing Census, 1998 and 2003 Mexican Economic Census, and 1989‐
1990 and 1994‐1995 Indian ASI‐NSS.  
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Figure 8:  Average Product vs. Productivity in the Cross‐Section 
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Note:  τ and A are relative to weighted average of industry τ and A.    Sources:  1994‐1995 ASI‐NSS (India), 2003 Economic Census (Mexico), and 1992 
Manufacturing Census (U.S.).   
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Figure 9:  Average Wage vs. Establishment Size 
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Sources:  1994‐1995 ASI‐NSS (India), 2003 Economic Census (Mexico), and 2002 Manufacturing Census (U.S.).
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Figure 10:  Average Productivity of Land and Machinery and Equipment 
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Sources:  1994‐1995 ASI‐NSS (India) and 2003 Economic Census (Mexico).
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Figure 11:  % Electricity Purchased from Grid in India 
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Source:  1994‐1995 ASI.
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Figure 12:  Distribution of Employment by Establishment Size 
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Sources:  1989‐1990 ASI‐NSS (India), 2003 Economic Census (Mexico), and 1997 Manufacturing Census 
(U.S.).   
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Appendix:   
 

Here we sketch two models that endogenously generate a positive elasticity of average 

product with respect to underlying productivity.  In the first model the number of management 

"layers" of the firm is determined endogenously as a function of firm productivity.  In the second 

model, high productivity firms sell to a larger number of domestic markets.   

 

Management Costs 

Aggregate output is a C.E.S. aggregate of individual firm output: 

1 1

i

i

Y Y di


 

  

  
 
  

Firm i output is given by: 

  
11

0

in

i i j ji

j

Y A a L dj









 
   

 
  

Here j indexes the management "layer" of the firm and in  denotes the total number of layers.  

We order j such that it is increasing in j

j

w

a
 where jw  is the price of layer j labor.  We 

parameterize this relationship as w aj

j

w
j

a
   where w

jw j  and 
1

a

j

j
a

 .   Bloom et. al. 

(2012) suggest the cost of adding management layers may be high in India.  We model this as a 

large value of a  or w  in India.  "Higher" management layers may be less productive in India or 

Mexico than in the U.S. (a larger value of a ) or simply more expensive there relative to lower 

management layers (higher w ).     

The marginal increase in profit from an increase in in  is 
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Assuming a fixed cost of each management layer and equating this cost with the marginal 

benefit, we get: 

1
1

1 ( )( 1)
1w a

i in A


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




   
  

This says that high productivity firms establish more management layers (e.g. 0w a   and 

  ).  Importantly for our purposes, the elasticity of in  with respect to iA  is decreasing in a  

and w .  Correspondingly, the increase in profit from a proportional increase in iA  is lower when 

a  or w  are larger. 

Average revenue per worker and the average wage at firm i are  

1

1
1

( 1)( 1)w ai i
i

i

PY
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L

 
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      

1

1
w

a w
i iw L


 


  . 

The elasticity of average revenue with respect to iA  and the elasticity of the average wage with 

respect to firm employment are therefore increasing in a  and w . 

 

Transportation Costs 

Consider a country with a number of symmetric markets indexed by j .  In each market, 

aggregate output is given by: 

1 1
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where jiY  is output of firm i sold in market j.  Total output of firm i is: 

0

in

i ji

j

Y Y dj


   

where in denotes the number of markets to which firm i sells.   Firm i profits from selling in 

market j are 

 

( 1)

1
i

ji
j

A



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
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    
 

where j  is the cost of transportation to market  j.  We rank  j such that transportation costs are 

increasing in j, which we parameterize as  ( 1)
1 j j

 


  .   The idea is that some markets are 

closer and others further away, where distance is indexed by j and   parameterizes how 

transportation costs increase as a function of distance.  Assuming a fixed cost of accessing each 

market, the number of markets firm i sells to is proportional 

1

.i in A




  

The number of markets firm i serves is increasing in iA  with an elasticity that is inversely related 

to how rapidly transportation costs rise with distance ( ).   High transportation costs therefore 

lower the profits from investing in higher iA .   
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